Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Proteomics ; 21(1): 30, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649851

RESUMO

BACKGROUND: Cardio-metabolic disorders (CMDs) are common in aging people and are pivotal risk factors for cardiovascular diseases (CVDs). Inflammation is involved in the pathogenesis of CVDs and aging, but the underlying inflammatory molecular phenotypes in CMDs and aging are still unknown. METHOD: We utilized multiple proteomics to detect 368 inflammatory proteins in the plasma of 30 subjects, including healthy young individuals, healthy elderly individuals, and elderly individuals with CMDs, by Proximity Extension Assay technology (PEA, O-link). Protein-protein interaction (PPI) network and functional modules were constructed to explore hub proteins in differentially expressed proteins (DEPs). The correlation between proteins and clinical traits of CMDs was analyzed and diagnostic value for CMDs of proteins was evaluated by ROC curve analysis. RESULT: Our results revealed that there were 161 DEPs (adjusted p < 0.05) in normal aging and EGF was the most differentially expressed hub protein in normal aging. Twenty-eight DEPs were found in elderly individuals with CMDs and MMP1 was the most differentially expressed hub protein in CMDs. After the intersection of DEPs in aging and CMDs, there were 10 overlapping proteins: SHMT1, MVK, EGLN1, SLC39A5, NCF2, CXCL6, IRAK4, REG4, PTPN6, and PRDX5. These proteins were significantly correlated with the level of HDL-C, TG, or FPG in plasma. They were verified to have good diagnostic value for CMDs in aging with an AUC > 0.7. Among these, EGLN1, NCF2, REG4, and SLC39A2 were prominently increased both in normal aging and aging with CMDs. CONCLUSION: Our results could reveal molecular markers for normal aging and CMDs, which need to be further expanded the sample size and to be further investigated to predict their significance for CVDs.

2.
Medicine (Baltimore) ; 103(11): e37563, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489688

RESUMO

INTRODUCTION: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is one kind of monogenic hereditary small-vessel disease in the brain caused by mutations in the NOTCH3 gene. However, it is rare for CADASIL to recur with different clinical manifestations in 1 patient, and some atypical clinical manifestations can easily lead to misdiagnosis by clinical physicians. CASE CONCERN: A 34-year-old male presented with transient speech disorder accompanied by weakness in the left side of the body for 1 day in June 2020. Magnetic resonance imaging showed acute ischemic infarction in right centrum semiovale, along with multiple abnormal white matter hyperintensities in the brain. Genetic sequencing identified a heterozygous mutation in the NOTCH3 gene. The patient experienced recurrent episodes in 2021 and 2023, with varying clinical symptoms including visual blurring, abnormal limb sensation, and sudden cognitive dysfunction. DIAGNOSIS: The diagnoses of CADASIL is based on clinical manifestations, imaging results, and genetic reports. INTERVISION AND OUTCOMES: The patient was received symptomatic treatment including antiplatelet aggregation therapy, lipid regulation, and plaque stabilization, resulting in improved symptoms. OUTCOMES: During the course of the disease, after medication treatment and rehabilitation exercise, the patient clinical symptoms have significantly improved. Currently, the patient is closely following up and regularly undergoing relevant examinations. LESSONS: In this rare case, we found that CADASIL can recur multiple times in a patient with different clinical symptoms, which can easily lead to clinical misdiagnosis. Clinicians should consider the possibility of CADASIL in young patients with sudden typical neurological dysfunction.


Assuntos
CADASIL , Leucoencefalopatias , Masculino , Humanos , Adulto , CADASIL/complicações , CADASIL/diagnóstico , CADASIL/genética , Receptor Notch3/genética , Encéfalo/patologia , Mutação , Imageamento por Ressonância Magnética , Leucoencefalopatias/complicações , Leucoencefalopatias/diagnóstico , Leucoencefalopatias/patologia
3.
Am J Physiol Cell Physiol ; 326(5): C1293-C1307, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38525543

RESUMO

Given the widespread application of glucocorticoids in ophthalmology, the associated elevation of intraocular pressure (IOP) has long been a vexing concern for clinicians, yet the underlying mechanisms remain inconclusive. Much of the discussion focuses on the extracellular matrix (ECM) of trabecular meshwork (TM). It is widely agreed that glucocorticoids impact the expression of matrix metalloproteinases (MMPs), leading to ECM deposition. Since Zn2+ is vital for MMPs, we explored its role in ECM alterations induced by dexamethasone (DEX). Our study revealed that in human TM cells treated with DEX, the level of intracellular Zn2+ significantly decreased, accompanied by impaired extracellular Zn2+ uptake. This correlated with changes in several Zrt-, Irt-related proteins (ZIPs) and metallothionein. ZIP8 knockdown impaired extracellular Zn2+ uptake, but Zn2+ chelation did not affect ZIP8 expression. Resembling DEX's effects, chelation of Zn2+ decreased MMP2 expression, increased the deposition of ECM proteins, and induced structural disarray of ECM. Conversely, supplementation of exogenous Zn2+ in DEX-treated cells ameliorated these outcomes. Notably, dietary zinc supplementation in mice significantly reduced DEX-induced IOP elevation and collagen content in TM, thereby rescuing the visual function of the mice. These findings underscore zinc's pivotal role in ECM regulation, providing a novel perspective on the pathogenesis of glaucoma.NEW & NOTEWORTHY Our study explores zinc's pivotal role in mitigating extracellular matrix dysregulation in the trabecular meshwork and glucocorticoid-induced ocular hypertension. We found that in human trabecular meshwork cells treated with dexamethasone, intracellular Zn2+ significantly decreased, accompanied by impaired extracellular Zn2+ uptake. Zinc supplementation rescues visual function by modulating extracellular matrix proteins and lowering intraocular pressure, offering a direction for further exploration in glaucoma management.


Assuntos
Glaucoma , Malha Trabecular , Camundongos , Humanos , Animais , Malha Trabecular/metabolismo , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Glaucoma/patologia , Pressão Intraocular , Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Metaloproteinases da Matriz/metabolismo , Zinco/metabolismo , Células Cultivadas
4.
Fish Shellfish Immunol ; 144: 109304, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103849

RESUMO

PACT (interferon-inducible double-stranded RNA-dependent protein kinase activator A) is a cellular protein which can activate PKR in dsRNA-independent manner. However, the role of PACT in fish virus infection remains largely unknown. In this study, a PACT homologue from grouper (Epinephelus coioides)(EcPACT) was cloned and characterized. The open reading frame of EcPACT has a full length of 924 bp and encodes a protein of 307 amino acids with a predicted molecular weight of 33.29 kDa. Similar to mammals, EcPACT contains three dsRBD domains. EcPACT shares 99.67 % homology with E. lanceolatus. Real-time fluorescence quantitative PCR results showed that EcPACT mRNA was widely expressed in all tissues and abundantly expressed in brain, blood, head kidney and kidney. In addition, SGIV and RGNNV infection significantly upregulated the transcript levels of EcPACT. Subcellular localization analysis showed that EcPACT was mainly distributed in the nucleus. Overexpression of EcPACT inhibited the replication of SGIV and RGNNV in vitro and positively regulated the expression of interferon (IFN) and pro-inflammatory factors. The results provide a better understanding of the relationship between PACT and viral infection in fish.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Viroses , Animais , Sequência de Aminoácidos , Proteínas de Peixes/genética , Proteínas de Peixes/química , Bass/genética , Interferons/genética , Infecções por Vírus de DNA/genética , Imunidade Inata/genética , Filogenia , Mamíferos
5.
Free Radic Biol Med ; 212: 415-432, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38134974

RESUMO

The molecular mechanism of how reduced mobile zinc (Zn2+) affected retinal ganglion cell (RGC) survival and optic nerve regeneration after optic nerve crush (ONC) injury remains unclear. Here, we used conditionally knocked out ZnT-3 in the amacrine cells (ACs) of mice (CKO) in order to explore the role of reactive oxygen species (ROS), nuclear factor erythroid 2-related factor 2 (NFE2L2, Nrf2) and autophagy in the protection of RGCs and axon regeneration after ONC injury. We found that reduced Zn2+ can promote RGC survival and axonal regeneration by decreasing ROS, activating Nrf2, and inhibiting autophagy. Additionally, autophagy after ONC is regulated by ROS and Nrf2. Visual function in mice after ONC injury was partially recovered through the reduction of Zn2+, achieved by using a Zn2+ specific chelator N,N,N',N'-tetrakis-(2-Pyridylmethyl) ethylenediamine (TPEN) or through CKO mice. Overall, our data reveal the crosstalk between Zn2+, ROS, Nrf2 and autophagy following ONC injury. This study verified that TPEN or knocking out ZnT-3 in ACs is a promising therapeutic option for the treatment of optic nerve damage and elucidated the postsynaptic molecular mechanism of Zn2+-triggered damage to RGCs after ONC injury.


Assuntos
Etilenodiaminas , Traumatismos do Nervo Óptico , Células Ganglionares da Retina , Camundongos , Animais , Fator 2 Relacionado a NF-E2/genética , Espécies Reativas de Oxigênio , Axônios/fisiologia , Regeneração Nervosa , Traumatismos do Nervo Óptico/tratamento farmacológico , Traumatismos do Nervo Óptico/genética , Zinco , Modelos Animais de Doenças
6.
Fish Shellfish Immunol ; 142: 109168, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37844852

RESUMO

As a key regulator of the innate immune system, FoxO1 has a variety of activities in biological organisms. In the present study, grouper FoxO1 (EcFoxO1) was cloned and the antiviral activity in red grouper neuron necrosis virus (RGNNV) and Singapore grouper iridescent virus (SGIV) was examined. The open reading frame (ORF) of EcFoxO1 contains 2,034 base pairs that encode a protein of 677 amino acids with a predicted molecular weight of 73.21 kDa. EcFoxO1 was shown to be broadly distributed in healthy grouper tissues, and was up-regulated in vitro in response to stimulation by RGNNV and SGIV. EcFoxO1 has a whole-cell distribution in grouper spleen (GS) cells. EcFoxO1 decreased the replication of RGNNV and SGIV, and activated interferon (IFN) 3, IFN-stimulated response element (ISRE), and nuclear factor-κB (NF-κB) promoter activities. EcFoxO1 could interact with EcIRF3. Together, the results demonstrated that EcFoxO1 might be an important regulator of grouper innate immune response against RGNNV and SGIV infection.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Ranavirus , Animais , Regulação da Expressão Gênica , Proteínas de Peixes/química , Sequência de Aminoácidos , Ranavirus/fisiologia , Imunidade Inata/genética , Antivirais , Neurônios
7.
Exp Neurol ; 370: 114561, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37802382

RESUMO

Intraventricular hemorrhage (IVH) commonly occurs as an extension of intracerebral hemorrhage (ICH) into the brain ventricular system, leading to worse outcomes without effective management. Using a mouse model of IVH, we found that impaired neurogenesis is evident in the subventricular zone (SVZ), along with persistent microglia activation, leukocyte infiltration and cell death. Pharmacological depletion of microglia using PLX3397, an inhibitor of colony stimulating factor 1 receptor (CSF1R), promotes neurogenesis, and alleviated delayed functional impairments in IVH mice. Meanwhile, an elevated level of microglia-derived CC chemokine ligand 20 (CCL20) is observed in the SVZ following IVH, which can induce the upregulation of pro-inflammatory factors in microglia and impair the proliferation and survival of neural stem cells (NSCs) in vitro. Blocking CCL20 in microglia leads to downregulation of protein kinase B (Akt)/mammalian target of rapamycin (mTOR)/the nuclear factor-κB (NF-κB) signaling pathway, which may contribute to CCL20-dependent pro-inflammatory responses and neural injury. These findings demonstrate a detrimental role of microglia in the neurogenesis and neurorepair after IVH in which CCL20 likely plays a role.


Assuntos
Quimiocinas CC , Microglia , Humanos , Microglia/metabolismo , Quimiocinas CC/metabolismo , Ligantes , Hemorragia Cerebral/metabolismo , Neurogênese/fisiologia , Quimiocina CCL20/metabolismo
8.
Fish Shellfish Immunol ; 141: 109067, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37689226

RESUMO

As one of the important members of the autophagy-related protein family, Atg14 plays a key role in the formation and maturation of autophagosomes. However, little is known about the potential roles of fish Atg14 and its roles in virus infection. In the present study, the homolog of Atg14 (EcAtg14) from the orange-spotted grouper (Epinephelus coioides) was cloned and characterized. The open reading frame (ORF) of EcAtg14 consists of 1530 nucleotides, encoding 509 amino acids, with a predicted molecular weight of 56.9 kDa. EcAtg14 was distributed in all tested tissues, with higher expression in liver, blood and spleen. The expression of EcAtg14 was increased in grouper spleen (GS) cells after Singapore grouper iridovirus (SGIV) infection. EcAtg14 was distributed in the cytoplasm of GS cells. Overexpression of EcAtg14 promoted SGIV replication in GS cells and inhibited IFN3, ISRE and NF-κB promoter activities. Co-immunoprecipitation results showed that there was an interaction between EcAtg14 and EcBeclin. EcAtg14 also promoted the synthesis of LC3-II in GS cells. These findings provide a basis for understanding the innate immune mechanism of grouper against viral infection.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Iridovirus , Ranavirus , Animais , Singapura , Proteínas de Peixes/química , Ranavirus/fisiologia , Imunidade Inata/genética , Filogenia
9.
Aging (Albany NY) ; 15(17): 8976-8992, 2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37695739

RESUMO

OBJECTIVE: Our study aimed to reveal the molecular mechanisms underlying the regulation of cerebral infarction by herpes virus latency infection via the OTUD1/NF-κB signaling pathway using evidence-based medicine Meta-analysis and bioinformatics analysis. METHODS: We conducted a Meta-analysis by searching Pubmed, Embase, and Web of Science databases to evaluate the correlation between herpes virus infection and increased risk of cerebral infarction. We obtained wild-type or mutant herpes virus latent infection-related brain tissue datasets from the GEO database and performed differential analysis to identify differentially expressed genes (DEGs) in the brain tissue after herpes virus latent infection. We further conducted WGCNA co-expression analysis on the cerebral infarction-related datasets from the GEO database to obtain key module genes and intersect them with the DEGs. We used ROC curve analysis to identify the key gene OTUD1 for predicting the occurrence of cerebral infarction and combined correlation and pathway enrichment analyses to identify the downstream pathways regulated by OTUD1. RESULTS: Our meta-analysis revealed that herpes virus infection is associated with an increased risk of cerebral infarction. By integrating the differential analysis and WGCNA co-expression analysis of GEO chip data, we identified three key genes mediating cerebral infarction after herpes virus latent infection. ROC curve analysis identified the key gene OTUD1, and the correlation and pathway enrichment analyses showed that OTUD1 regulates the NF-κB signaling pathway to mediate cerebral infarction. CONCLUSION: Herpes virus latent infection promotes cerebral infarction by activating the OTUD1/NF-κB signaling pathway.


Assuntos
Infecção Latente , Acidente Vascular Cerebral , Viroses , Humanos , NF-kappa B , Transdução de Sinais , Acidente Vascular Cerebral/genética , Infarto Cerebral , Proteases Específicas de Ubiquitina
10.
Fish Shellfish Immunol ; 140: 108990, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37558148

RESUMO

Singapore grouper iridovirus (SGIV) is a highly pathogenic Iridoviridae that causes hemorrhage and spleen enlargement in grouper. Despite previous genome annotation efforts, many open reading frames (ORFs) in SGIV remain uncharacterized, with largely unknown functions. In this study, we identified the protein encoded by SGIV ORF122, now referred to as VP122. Notably, overexpression of VP122 promoted SGIV replication. Moreover, VP122 exhibited antagonistic effects on the natural antiviral immune response through the cGAS-STING signaling pathway. It specifically inhibited the cGAS-STING-triggered transcription of various immune-related genes, including IFN1, IFN2, ISG15, ISG56, PKR, and TNF-α in GS cells. Additionally, VP122 significantly inhibited the activation of the ISRE promoter mediated by EccGAS and EcSTING but had no effect on EccGAS or EcSTING alone. Immunoprecipitation and Western blotting experiments revealed that VP122 specifically interacts with EcSTING but not EccGAS. Notably, this interaction between VP122 and EcSTING was independent of any specific domain of EcSTING. Furthermore, VP122 inhibited the self-interaction of EcSTING. Interestingly, VP122 did not affect the recruitment of EcTBK1 and EcIRF3 to the EcSTING complex. Collectively, our results demonstrate that SGIV VP122 targets EcSTING to evade the type I interferon immune response, revealing a crucial role for VP122 in modulating the host-virus interaction.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Interferon Tipo I , Iridovirus , Ranavirus , Animais , Singapura , Proteínas de Peixes/genética , Clonagem Molecular , Ranavirus/fisiologia , Imunidade , Interferon Tipo I/genética
11.
Neural Regen Res ; 18(12): 2773-2780, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37449644

RESUMO

Vision depends on accurate signal conduction from the retina to the brain through the optic nerve, an important part of the central nervous system that consists of bundles of axons originating from retinal ganglion cells. The mammalian optic nerve, an important part of the central nervous system, cannot regenerate once it is injured, leading to permanent vision loss. To date, there is no clinical treatment that can regenerate the optic nerve and restore vision. Our previous study found that the mobile zinc (Zn2+) level increased rapidly after optic nerve injury in the retina, specifically in the vesicles of the inner plexiform layer. Furthermore, chelating Zn2+ significantly promoted axonal regeneration with a long-term effect. In this study, we conditionally knocked out zinc transporter 3 (ZnT3) in amacrine cells or retinal ganglion cells to construct two transgenic mouse lines (VGATCreZnT3fl/fl and VGLUT2CreZnT3fl/fl, respectively). We obtained direct evidence that the rapidly increased mobile Zn2+ in response to injury was from amacrine cells. We also found that selective deletion of ZnT3 in amacrine cells promoted retinal ganglion cell survival and axonal regeneration after optic nerve crush injury, improved retinal ganglion cell function, and promoted vision recovery. Sequencing analysis of reginal ganglion cells revealed that inhibiting the release of presynaptic Zn2+ affected the transcription of key genes related to the survival of retinal ganglion cells in postsynaptic neurons, regulated the synaptic connection between amacrine cells and retinal ganglion cells, and affected the fate of retinal ganglion cells. These results suggest that amacrine cells release Zn2+ to trigger transcriptomic changes related to neuronal growth and survival in reginal ganglion cells, thereby influencing the synaptic plasticity of retinal networks. These results make the theory of zinc-dependent retinal ganglion cell death more accurate and complete and provide new insights into the complex interactions between retinal cell networks.

12.
Brain Pathol ; 33(5): e13161, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37142391

RESUMO

Retinal ischaemia/reperfusion (I/R) injury is a common cause of retinal ganglion cell (RGC) apoptosis and axonal degeneration, resulting in irreversible visual impairment. However, there are no available neuroprotective and neurorestorative therapies for retinal I/R injury, and more effective therapeutic approaches are needed. The role of the myelin sheath of the optic nerve after retinal I/R remains unknown. Here, we report that demyelination of the optic nerve is an early pathological feature of retinal I/R and identify sphingosine-1-phosphate receptor 2 (S1PR2) as a therapeutic target for alleviating demyelination in a model of retinal I/R caused by rapid changes in intraocular pressure. Targeting the myelin sheath via S1PR2 protected RGCs and visual function. In our experiment, we observed early damage to the myelin sheath and persistent demyelination accompanied by S1PR2 overexpression after injury. Blockade of S1PR2 by the pharmacological inhibitor JTE-013 reversed demyelination, increased the number of oligodendrocytes, and inhibited microglial activation, contributing to the survival of RGCs and alleviating axonal damage. Finally, we evaluated the postoperative recovery of visual function by recording visual evoked potentials and assessing the quantitative optomotor response. In conclusion, this study is the first to reveal that alleviating demyelination by inhibiting S1PR2 overexpression may be a therapeutic strategy for retinal I/R-related visual impairment.


Assuntos
Doenças Desmielinizantes , Neurite Óptica , Humanos , Receptores de Esfingosina-1-Fosfato/uso terapêutico , Potenciais Evocados Visuais , Neurite Óptica/tratamento farmacológico , Neurite Óptica/etiologia , Neurite Óptica/patologia , Isquemia , Reperfusão/efeitos adversos , Transtornos da Visão/complicações
13.
Front Immunol ; 14: 1185907, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223098

RESUMO

Introduction: Receptor interacting protein 2 (RIP2), serves as a vital sensor of cell stress, is able to respond to cell survival or inflammation, and is involved in antiviral pathways. However, studies on the property of RIP2 in viral infections in fish have not been reported. Methods: In this paper, we cloned and characterized RIP2 homolog from orange-spotted grouper (Epinephelus coioides) (EcRIP2) and further discussed the relevance of EcRIP2 to EcASC, comparing the influences of EcRIP2 and EcASC on the modulation of inflammatory factors and the NF-κB activation to reveal the mechanism of EcRIP2 in fish DNA virus infection. Results: Encoded a 602 amino acid protein, EcRIP2 contained two structural domains: S-TKc and CARD. Subcellular localization signified that EcRIP2 existed in cytoplasmic filaments and dot aggregation patterns. After SGIV infection, the EcRIP2 filaments aggregated into larger clusters near the nucleus. The infection of SGIV could notably up-regulate the transcription level of the EcRIP2 gene compared with lipopolysaccharide (LPS) and red grouper nerve necrosis virus (RGNNV). Overexpression of EcRIP2 impeded SGIV replication. The elevated expression levels of inflammatory cytokines induced by SGIV were remarkably hindered by EcRIP2 treatment in a concentration-dependent manner. In contrast, EcASC treatment could up-regulate SGIV-induced cytokine expression in the presence of EcCaspase-1. Enhancing amounts of EcRIP2 could overcome the down regulatory effect of EcASC on NF-κB. Nevertheless, increasing doses of EcASC failed to restrain the NF-κB activation in the existence of EcRIP2. Subsequently, it was validated by a co-immunoprecipitation assay that EcRIP2 dose-dependently competed with EcASC binding to EcCaspase-1. With increasing time to SGIV infection, EcCaspase-1 gradually combined with more EcRIP2 than EcASC. Discussion: Collectively, this paper highlighted that EcRIP2 may impede SGIV-induced hyperinflammation by competing with EcASC for binding EcCaspase-1, thereby suppressing viral replication of SGIV. Our work supplies novel viewpoints into the modulatory mechanism of RIP2-associated pathway and offers a novel view of RIP2-mediated fish diseases.


Assuntos
Bass , Iridovirus , Animais , Caspase 1 , Bass/genética , NF-kappa B , Singapura , Caspases , Citocinas
14.
Alzheimers Res Ther ; 15(1): 100, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237388

RESUMO

BACKGROUND: Plasma amyloid-ß (Aß) peptides and tau proteins are promising biomarkers of Alzheimer's disease (AD), not only for predicting Aß and tau pathology but also for differentiating AD from other neurodegenerative diseases. However, reference intervals for plasma biomarkers of AD in healthy elderly Chinese individuals have not yet been established. METHODS: Biomarkers of AD were measured using single-molecule array (Simoa) assays in plasma samples from 193 healthy, cognitively unimpaired Chinese individuals aged 50-89 years. The 95% reference intervals for plasma Aß42, Aß40, t-tau, p-tau181, and derived ratios were calculated by using log-transformed parametric methods. RESULTS: Plasma Aß42, Aß40, and p-tau181 levels were positively correlated with age, while the Aß42/Aß40 ratio was negatively correlated with age. The 95% reference intervals for plasma Aß42 and Aß40 were 2.72-11.09 pg/mL and 61.4-303.9 pg/mL, respectively, and the 95% reference intervals for plasma t-tau and p-tau181 were 0.20-3.12 pg/mL and 0.49-3.29 pg/mL, respectively. The 95% reference intervals for the Aß42/Aß40 ratio, p-tau181/t-tau ratio, and p-tau181/Aß42 ratio were 0.022-0.064, 0.38-6.34, and 0.05-0.55, respectively. CONCLUSION: Reference intervals for plasma biomarkers of AD may assist clinicians in making accurate clinical decisions.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Idoso , Humanos , População do Leste Asiático , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides , Proteínas tau , Disfunção Cognitiva/diagnóstico , Biomarcadores
15.
Front Microbiol ; 14: 1086471, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065157

RESUMO

The effect of structure of gut microbes on the health of host has attracted increasing attention. Sea bass Lateolabrax japonicus is an important farmed fish in China. The relationship of the dynamic changes of intestinal bacterial communities in L. japonicus and the cultural water environment is very important for healthy culture. Here, the diversity and abundance of the gut microbial communities of L. japonicus were evaluated during the culture using 16S rRNA Illumina sequencing. Both the opportunistic pathogens Aeromonas (1.68%), Vibrio (1.59%), and Acinetobacter (1.22%); and the potential probiotics Lactobacillus (2.27%), Bacillus (1.16%), and Lactococcus (0.37%) were distributed in the gut of L. japonicus. The increasing concentration of nitrogen of water environments with the increase of culture time significantly correlated with shifts in the microbial community structure: 40.04% of gut microbial changes due to nitrogen concentration. Higher concentrations of nitrogen showed a significantly negative correlation with intestinal probiotics in L. japonicus. The results indicate that the abundance of intestinal bacteria of L. japonicus is mainly driven by the changes of environmental factors (e.g., nitrogen), and it's very important that the linking environmental parameters with bacterial data of guts could be used as an early warning indicator in L. japonicus heath culture.

16.
Front Immunol ; 14: 1092824, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845102

RESUMO

Cyclic GMP-AMP synthase (cGAS) is one of the classical pattern recognition receptors that recognizes mainly intracytoplasmic DNA. cGAS induces type I IFN responses to the cGAS-STING signaling pathway. To investigate the roles of cGAS-STING signaling pathway in grouper, a cGAS homolog (named EccGAS) was cloned and identified from orange-spotted grouper (Epinephelus coioides). The open reading frame (ORF) of EccGAS is 1695 bp, encodes 575 amino acids, and contains a Mab-21 typical structural domain. EccGAS is homologous to Sebastes umbrosus and humans at 71.8% and 41.49%, respectively. EccGAS mRNA is abundant in the blood, skin, and gills. It is uniformly distributed in the cytoplasm and colocalized in the endoplasmic reticulum and mitochondria. Silencing of EccGAS inhibited the replication of Singapore grouper iridovirus (SGIV) in grouper spleen (GS) cells and enhanced the expression of interferon-related factors. Furthermore, EccGAS inhibited EcSTING-mediated interferon response and interacted with EcSTING, EcTAK1, EcTBK1, and EcIRF3. These results suggest that EccGAS may be a negative regulator of the cGAS-STING signaling pathway of fish.


Assuntos
Bass , Interferon Tipo I , Perciformes , Ranavirus , Animais , Humanos , Bass/genética , Sequência de Aminoácidos , Ranavirus/fisiologia
17.
Antioxidants (Basel) ; 11(10)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36290724

RESUMO

Retinal ganglion cells (RGCs), the projection neurons of the eye, are irreversibly lost once the optic nerve is injured, which is a critical mechanism of glaucoma. Mobile zinc (Zn2+) levels rapidly increase in retinal interneuron amacrine cells and Zn2+ is then transferred to RGCs via the Zn2+ transporter protein ZnT-3, triggering RGC loss in optic nerve injury. Zn2+ chelation and ZnT-3 deletion promote long-term RGC survival. However, the downstream signaling pathways of Zn2+ in RGCs remains unknown. Here, we show that increased levels of Zn2+ upregulate the expression and activity of mitochondrial zinc metallopeptidase OMA1 in the retina, leading to the cleavage of DELE1 and activation of cytosolic eIF2α kinase PKR, triggering the integrated stress response (ISR) in RGCs. Our study identified OMA1 and ISR as the downstream molecular mechanisms of retinal Zn2+ and potential targets for preventing the progression of Zn2+-associated neuronal damage.

18.
Fish Shellfish Immunol ; 131: 549-558, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36273516

RESUMO

Glycogen synthase kinase 3ß (GSK3ß), a serine/threonine protein kinase, is a crucial regulator of several signaling pathways and plays a vital role in cell proliferation, growth, apoptosis, and immune responses. However, the role of GSK3ß during viral infection in teleosts remains largely unknown. In the present study, a GSK3ß homologue from Epinephelus coioides (EcGSK3ß) was cloned and characterized. The open reading frame of EcGSK3ß consists of 1323 bp, encoding a 440 amino acid protein, with a predicted molecular mass of 48.23 kDa. Similar to its mammalian counterpart, EcGSK3ß contains an S_TKc domain. EcGSK3ß shares 99.77% homology with the giant grouper (Epinephelus lanceolatus). Quantitative real-time PCR analysis indicated that EcGSK3ß mRNA was broadly expressed in all tested tissues, with abundant expression in the skin, blood, and intestines. Additionally, the expression of EcGSK3ß increased after Singapore grouper iridovirus (SGIV) infection in grouper spleen (GS) cells. Intracellular localization analysis demonstrated that EcGSK3ß is mainly distributed in the cytoplasm. EcGSK3ß overexpression promoted SGIV replication during viral infection in vitro. In contrast, silencing of EcGSK3ß inhibited SGIV replication. EcGSK3ß significantly downregulated the activities of interferon-ß, interferon-sensitive response element, and NF-κB. Taken together, these findings are important for a better understanding of the function of GSK3ß in fish and reveal its involvement in the host response to viral immune challenge.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Iridovirus , Ranavirus , Animais , Iridovirus/fisiologia , Glicogênio Sintase Quinase 3 beta/genética , Singapura , Proteínas de Peixes/química , Ranavirus/fisiologia , Imunidade Inata/genética , Filogenia , Mamíferos/metabolismo
19.
Front Immunol ; 13: 931534, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935992

RESUMO

Viral infection causes changes in the internal environment of host cells, and a series of stress responses are generated to respond to these changes and help the cell survive. Stress granule (SG) formation is a type of cellular stress response that inhibits viral replication. However, the relationship between red-spotted grouper nervous necrosis virus (RGNNV) infection and SGs, and the roles of the SG marker protein RAS GTPase-activating protein (SH3 domain)-binding protein 1 (G3BP1) in viral infection remain unclear. In this study, RGNNV infection induced grouper spleen (GS) cells to produce SGs. The SGs particles co-located with the classic SG marker protein eIF3η, and some SGs depolymerized under treatment with the translation inhibitor, cycloheximide (CHX). In addition, when the four kinases of the eukaryotic translation initiation factor 2α (eIF2α)-dependent pathway were inhibited, knockdown of HRI and GCN2 with small interfering RNAs and inhibition of PKR with 2-aminopurine had little effect on the formation of SGs, but the PERK inhibitor significantly inhibited the formation of SGs and decreased the phosphorylation of eIF2α. G3BP1 of Epinephelus coioides (named as EcG3BP1) encodes 495 amino acids with a predicted molecular weight of 54.12 kDa and 65.9% homology with humans. Overexpression of EcG3BP1 inhibited the replication of RGNNV in vitro by up-regulating the interferon and inflammatory response, whereas knockdown of EcG3BP1 promoted the replication of RGNNV. These results provide a better understanding of the relationship between SGs and viral infection in fish.


Assuntos
Bass , Doenças dos Peixes , Nodaviridae , Animais , Bass/genética , DNA Helicases , Proteínas de Peixes/química , Proteínas de Peixes/genética , Humanos , Imunidade Inata , Necrose , Nodaviridae/fisiologia , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Grânulos de Estresse , Replicação Viral
20.
Viruses ; 14(8)2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-36016424

RESUMO

A newly discovered lytic bacteriophage, V-YDF132, which efficiently infects the pathogenic strain of Vibrio harveyi, was isolated from aquaculture water collected in Yangjiang, China. Electron microscopy studies revealed that V-YDF132 belonged to the Siphoviridae family, with an icosahedral head and a long noncontractile tail. The phage has a latent period of 25 min and a burst size of 298 pfu/infected bacterium. V-YDF132 was stable from 37 to 50 °C. It has a wide range of stability (pH 5-11) and can resist adverse external environments. In addition, in vitro the phage V-YDF132 has a strong lytic effect on the host. Genome sequencing results revealed that V-YDF132 has a DNA genome of 84,375 bp with a GC content of 46.97%. In total, 115 putative open reading frames (ORFs) were predicted in the phage V-YDF132 genome. Meanwhile, the phage genome does not contain any known bacterial virulence genes or antimicrobial resistance genes. Comparison of the genomic features of the phage V-YDF132 and phylogenetic analysis revealed that V-YDF132 is a newly discovered Vibrio phage. Multiple genome comparisons and comparative genomics showed that V-YDF132 is in the same genus as Vibrio phages vB_VpS_PG28 (MT735630.2) and VH2_2019 (MN794238.1). Overall, the results indicate that V-YDF132 is potentially applicable for biological control of vibriosis.


Assuntos
Bacteriófagos , Siphoviridae , Vibrio , Bacteriófagos/genética , Genoma Viral , Myoviridae/genética , Filogenia , Vibrio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...